

PacketFence Developer's Guide

PacketFence v15.0.0

Version 15.0.0 - October 2025

Table of Contents

1. About this Guide	-
1.1. Other Guides	
1.2. Other sources of information	
2. Creating a new Switch via a Template	
2.1. Using web admin	
2.2. Using CLI	
2.3. Required Parameters	
2.4. RADIUS scope Parameters	
2.5. Additional parameters	
2.6. Comments	
2.7. Defining RADIUS Attributes	
2.8. Dynamic RADIUS Attribute Value Syntax	
3. Documentation	
4. Asciidoctor documentation	
4.1. Documentation Conventions	
4.2. Checklist to create a new guide	
5. Development environment setup	
6. Administration GUI development setup	
7. Golang environment	
7.1. PacketFence Golang libraries	
8. Code conventions	
8.1. Code style	
9. HTTP JSON API	
9.1. How to use the API	
10. Customizing PacketFence	33
10.1. Captive Portal	33
10.2. Adding custom fields to the database	34
10.3. VLAN assignment	35
11. SNMP	37
11.1. Introduction	37
11.2. Obtaining switch and port information	37
12. Supporting new network hardware.	38
12.1. Switch	38
12.2. Wireless Access-Points or Controllers	
12.3. The "adding a new network device module in PacketFence" checklist	
13. PacketFence builds	
13.1. Packer	44
13.2. Anatomy of Packer template	
13.3. How to build container images ?	
13.4. Troubleshooting	
14. Developer recipes	
14.1. Virtual environment.	
14.2. Running development version	
15. Containers recipes	
15.1. Glossary	
15.2 Applying a custom patch on a server rupping the packages	

15.3. Altering the code in a container on a server running the packages	49	
16. Running tests	50	
16.1. Unit tests	50	
16.2. Integration tests.	51	
17. Contributing	57	
17.1. Creating patches	57	
17.2. Translations	57	
18. Commercial Support and Contact Information	59	
19. GNU Free Documentation License	60	

Copyright © 2025 Inverse inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

The fonts used in this guide are licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

Copyright © Łukasz Dziedzic, http://www.latofonts.com/, with Reserved Font Name: "Lato".

Copyright © Raph Levien, http://levien.com/, with Reserved Font Name: "Inconsolata".

1. About this Guide

This guide provides technical documentation for customizing and extending PacketFence. It covers REST API integration, captive portal theming and functionality modifications, SNMP module development, adding support for new network equipment, and core application code customizations. Essential for integrators, developers extending PacketFence functionality, and organizations requiring specialized implementations.

Find the latest version at https://packetfence.org/documentation/

1.1. Other Guides

Clustering Guide

Comprehensive guide for setting up active/active clustering environments with HAProxy load balancing, Keepalived for high availability, and Galera database clustering. Includes advanced configuration for layer-3 clusters and troubleshooting cluster synchronization issues.

Installation Guide

Complete installation and configuration guide covering standalone deployments, system requirements, network planning, authentication integration (Active Directory, LDAP, RADIUS), certificate management, and initial system setup. Includes troubleshooting and advanced configuration topics.

Network Devices Configuration Guide

Device-specific configuration instructions for over 80 supported network vendors including switches (802.1X, MAC authentication, VLAN assignment), wireless controllers and access points. Covers RADIUS, SNMP configuration and integration with various network equipment manufacturers.

Upgrade Guide

Step-by-step upgrade procedures with version-specific compatibility changes, manual configuration migration steps, database schema updates, and critical upgrade notes. Includes troubleshooting for common upgrade issues and rollback procedures.

1.2. Other sources of information

PacketFence News

Release announcements with detailed feature descriptions, performance improvements, security updates, and comprehensive bug fix listings organized by PacketFence version.

PacketFence Users Mailing List

Community support forum for installation help, configuration questions, troubleshooting assistance, and best practices discussions. Active community of users and developers providing peer-to-peer support.

PacketFence Announcements

Public announcements including new releases, security warnings and important updates

regarding PacketFence. Low-traffic list for staying informed about major PacketFence developments.

PacketFence Development

Discussion of PacketFence development including feature requests, architectural discussions, patch submissions and development coordination. For developers contributing to PacketFence core.

Package and release tarballs include the PacketFence guide files.

2. Creating a new Switch via a Template

2.1. Using web admin

You can directly create or edit switch templates in Configuration Integration Switch Templates menu.

2.2. Using CLI

To create a new Switch Template you must create a template file in the /usr/local/pf/lib/pf/Switch directory. The file must have the following pattern /usr/local/pf/lib/pf/Switch/<Vendor>/<SwitchName>.def.

For example to create a template for the vendor Cyberdyne and switch Switchinator 800. The file name is /usr/local/pf/lib/pf/Switch/Cyberdyne/Switchinator800.def The file name must must only consist of alphanumeric characters and under scores and must begin with a letter.

Once you have completed your switch template, you will need to perform the following commands so it can be used:

/usr/local/pf/addons/dev-helpers/bin/generator-template-switches-defaults.pl /usr/local/pf/bin/pfcmd configreload hard /usr/local/pf/bin/pfcmd service pf restart

The file consist of parameter names and their values. There is no sections but RADIUS scope parameters act like this.

No scopes are inherited from a base switch template, you need to define each scope you want to use.

You can find a full working example below. Other examples are available in /usr/local/pf/lib/pf/Switch/ folder.

2.3. Required Parameters

- description The description of the switch.
- radiusDisconnect The RADIUS disconnect methods to use. Must be one of the following values coaldisconnect|coaOrDisconnect.

2.4. RADIUS scope Parameters

- acceptVlan Attributes for accept vlan scope
- acceptRole Attributes for accept role scope.

- reject Attributes for rejection scope.
- disconnect Attributes for disconnect scope (required if radiusDisconnect is 'disconnect' or 'coaOrDisconnect')
- coa Attributes for CoA scope (required if radiusDisconnect is 'coa' or 'coaOrDisconnect')
- voip Attributes for VOIP scope (If VOIP is enabled)
- bounce Attributes for bounce scope

2.5. Additional parameters

snmpDisconnect - If SNMP protocol should be use to disconnect (values: enabled or disabled)

2.6. Comments

The line of a comment must begin with a '#' For example:

```
# This is a comment
```

2.7. Defining RADIUS Attributes

```
scopeName = <<EOT
Attribute-Name1 = value1
Attribute-Name2 = value2
EOT</pre>
```

2.8. Dynamic RADIUS Attribute Value Syntax

Some values depends on the context of the current request. So here is mini templating language to format values.

- Text replacement: \$name
- Embedded text replacement: start-\${name}-end
- Functions: \${f1("", \$var, f2())}

2.8.1. Available variables for RADIUS scope

- acceptRole (Same as acceptVlan)
- reject (Same as acceptVlan)
- acceptVlan
 - autoreg
 - connection_sub_type
 - connection_type

- eap_type
- fingerbank_info.device_name
- fingerbank_info.device_fq
- fingerbank_info.device_hierarchy_names
- fingerbank_info.device_hierarchy_ids
- fingerbank_info.score
- fingerbank_info.version
- fingerbank_info.mobile
- ifDesc
- ifIndex
- isPhone
- last_accounting.acctsessionid
- last_accounting.username
- locationlog.connection_sub_type
- locationlog.connection_type
- locationlog.dot1x_username
- locationlog.end_time
- locationlog.ifDesc
- locationlog.mac
- · locationlog.port
- locationlog.realm
- locationlog.role
- locationlog.session_id
- · locationlog.ssid
- locationlog.start_time
- locationlog.stripped_user_name
- locationlog.switch
- locationlog.switch_ip
- locationlog.switch_ip_int
- locationlog.switch_mac
- locationlog.vlan
- locationlog.voip
- mac
- nas_port_id
- nas_port_type
- node_info.autoreg
- node_info.status
- node_info.bypass_vlan

- node_info.bandwidth_balance
- node_info.regdate
- node_info.bypass_role
- node_info.device_class
- node_info.device_type
- node_info.device_version
- node_info.device_score
- node_info.pid
- node_info.machine_account
- node_info.category
- node_info.mac
- node_info.last_arp
- node_info.last_dhcp
- node_info.user_agent
- node_info.computername
- node_info.dhcp_fingerprint
- node_info.detect_date
- node_info.voip
- node_info.notes
- node_info.time_balance
- node_info.sessionid
- node_info.dhcp_vendor
- profile._access_registration_when_registered
- profile._always_use_redirecturl
- profile._autoregister
- profile._block_interval
- profile._description
- profile._dot1x_recompute_role_from_portal
- profile._dot1x_unset_on_unmatch
- profile._dpsk
- profile._locale
- profile._login_attempt_limit
- profile._logo
- profile._name
- profile._network_logoff
- profile._network_logoff_popup
- profile._preregistration
- profile._redirecturl

- profile._reuse_dot1x_credentials
- profile._root_module
- profile._self_service
- profile._sms_pin_retry_limit
- profile._sms_request_limit
- profile._status
- profile._unreg_on_acct_stop
- profile._vlan_pool_technique
- radius_request.<Radius Attribute Name>
- realm
- session id
- source_ip
- ssid
- stripped_user_name
- switch._ExternalPortalEnforcement
- switch._RoleMap
- switch._VpnMap
- switch._SNMPAuthPasswordRead
- switch._SNMPAuthPasswordTrap
- switch._SNMPAuthPasswordWrite
- switch._SNMPAuthProtocolRead
- switch._SNMPAuthProtocolTrap
- switch._SNMPAuthProtocolWrite
- switch._SNMPCommunityRead
- switch._SNMPCommunityTrap
- switch. SNMPCommunityWrite
- switch._SNMPEngineID
- switch._SNMPPrivPasswordRead
- switch._SNMPPrivPasswordTrap
- switch._SNMPPrivPasswordWrite
- switch._SNMPPrivProtocolRead
- switch._SNMPPrivProtocolTrap
- switch._SNMPPrivProtocolWrite
- switch._SNMPUserNameRead
- switch. SNMPUserNameTrap
- switch._SNMPUserNameWrite
- switch._SNMPVersion
- switch._SNMPVersionTrap

- switch._TenantId
- switch._UrlMap
- switch._VlanMap
- switch._VoIPEnabled
- switch._cliEnablePwd
- switch._cliPwd
- switch._cliTransport
- switch._cliUser
- switch._coaPort
- switch._controllerlp
- switch._deauthMethod
- switch._disconnectPort
- switch._id
- switch._inlineTrigger
- switch._ip
- switch._macSearchesMaxNb
- switch._macSearchesSleepInterval
- switch._mode
- switch._roles
- switch._switchlp
- switch._switchMac
- switch._uplink
- switch._useCoA
- switch._vlans
- switch._wsPwd
- switch._wsTransport
- switch._wsUser
- switch_ip
- switch_mac
- time
- user_name
- user_role
- vlan
- wasInline
- coa
 - last_accounting.acctsessionid
 - last_accounting.username
 - mac

- locationlog.connection_sub_type
- locationlog.connection_type
- locationlog.dot1x_username
- locationlog.end_time
- locationlog.ifDesc
- locationlog.mac
- · locationlog.port
- · locationlog.realm
- locationlog.role
- locationlog.session_id
- · locationlog.ssid
- locationlog.start_time
- locationlog.stripped_user_name
- locationlog.switch
- locationlog.switch_ip
- locationlog.switch_ip_int
- locationlog.switch_mac
- locationlog.vlan
- · locationlog.voip
- role
- time

• disconnect

- disconnectlp
- last_accounting.acctsessionid
- last_accounting.username
- locationlog.connection_sub_type
- locationlog.connection_type
- locationlog.dot1x_username
- locationlog.end_time
- locationlog.ifDesc
- locationlog.mac
- locationlog.port
- locationlog.realm
- · locationlog.role
- locationlog.session_id
- · locationlog.ssid
- locationlog.start_time
- locationlog.stripped_user_name

- locationlog.switch
- locationlog.switch_ip
- locationlog.switch_ip_int
- locationlog.switch_mac
- locationlog.vlan
- · locationlog.voip
- mac
- time

• voip

- switch._ExternalPortalEnforcement
- switch._RoleMap
- switch._VpnMap
- switch. SNMPAuthPasswordRead
- switch._SNMPAuthPasswordTrap
- switch._SNMPAuthPasswordWrite
- switch._SNMPAuthProtocolRead
- switch._SNMPAuthProtocolTrap
- switch._SNMPAuthProtocolWrite
- switch._SNMPCommunityRead
- switch._SNMPCommunityTrap
- switch._SNMPCommunityWrite
- switch._SNMPEngineID
- switch._SNMPPrivPasswordRead
- switch._SNMPPrivPasswordTrap
- switch._SNMPPrivPasswordWrite
- switch._SNMPPrivProtocolRead
- switch._SNMPPrivProtocolTrap
- switch._SNMPPrivProtocolWrite
- switch._SNMPUserNameRead
- switch._SNMPUserNameTrap
- switch._SNMPUserNameWrite
- switch._SNMPVersion
- switch._SNMPVersionTrap
- switch._TenantId
- switch._UrlMap
- switch._VlanMap
- switch._VoIPEnabled
- switch._cliEnablePwd

- switch._cliPwd
- switch._cliTransport
- switch._cliUser
- switch._coaPort
- switch._controllerlp
- switch._deauthMethod
- switch._disconnectPort
- switch._id
- switch._inlineTrigger
- switch._ip
- switch._macSearchesMaxNb
- switch._macSearchesSleepInterval
- switch._mode
- switch._roles
- switch._switchlp
- switch._switchMac
- switch._uplink
- switch._useCoA
- switch._vlans
- switch._wsPwd
- switch._wsTransport
- switch._wsUser
- time
- vlan

• bounce

- disconnectlp
- ifIndex
- last_accounting.acctsessionid
- last_accounting.username
- locationlog.connection_sub_type
- locationlog.connection_type
- locationlog.dot1x_username
- locationlog.end_time
- locationlog.ifDesc
- locationlog.mac
- locationlog.port
- locationlog.realm
- · locationlog.role

- locationlog.session_id
- · locationlog.ssid
- locationlog.start_time
- locationlog.stripped_user_name
- locationlog.switch
- locationlog.switch_ip
- locationlog.switch_ip_int
- locationlog.switch_mac
- locationlog.vlan
- · locationlog.voip
- mac
- switch._cliEnablePwd
- switch._cliPwd
- switch._cliTransport
- switch._cliUser
- switch._coaPort
- switch._controllerlp
- switch._deauthMethod
- switch._disconnectPort
- switch._ExternalPortalEnforcement
- switch._id
- switch._inlineTrigger
- switch. ip
- switch._macSearchesMaxNb
- switch._macSearchesSleepInterval
- switch._mode
- switch._RoleMap
- switch._VpnMap
- switch._roles
- switch._SNMPAuthPasswordRead
- switch._SNMPAuthPasswordTrap
- switch._SNMPAuthPasswordWrite
- switch._SNMPAuthProtocolRead
- switch._SNMPAuthProtocolTrap
- switch. SNMPAuthProtocolWrite
- switch._SNMPCommunityRead
- switch._SNMPCommunityTrap
- switch._SNMPCommunityWrite

- switch._SNMPEngineID
- switch._SNMPPrivPasswordRead
- switch._SNMPPrivPasswordTrap
- switch._SNMPPrivPasswordWrite
- switch._SNMPPrivProtocolRead
- switch._SNMPPrivProtocolTrap
- switch._SNMPPrivProtocolWrite
- switch._SNMPUserNameRead
- switch._SNMPUserNameTrap
- switch._SNMPUserNameWrite
- switch. SNMPVersion
- switch._SNMPVersionTrap
- switch._switchlp
- switch._switchMac
- switch._TenantId
- switch._uplink
- switch._UrlMap
- switch._useCoA
- switch._VlanMap
- switch._vlans
- switch._VoIPEnabled
- switch._wsPwd
- switch._wsTransport
- switch._wsUser
- time

2.8.2. Available functions

- macToEUI48(\$mac) format a mac to AA-BB-CC-DD-FF-EE format
- uc(\$string) uppercases a string
- lc(\$string) lowercases a string
- log(\$string) log a message to the log
- substr(\$str, \$offset, \$len) Extracts a substring from a string
- split(\$sep, \$str) Split a string by a seperator.
- join(\$sep, \$a, \$b, ..) Join a list of string with a seperator.
- replace(\$str, \$old, \$new) Replace the old string with a new string.

2.8.3. Full Working Example

```
description = The Switchinator 800
radiusDisconnect = disconnect
acceptVlan = <<EOT</pre>
Tunnel-Medium-Type = 6
Tunnel-Type = 13
Tunnel-Private-Group-Id = $vlan
EOT
acceptRole = <<EOT</pre>
Filter-Id = $role
EOT
reject = <<EOT
Reply-Message = Hasta la vista, baby.
EOT
disconnect = <<EOT</pre>
Calling-Station-Id= ${macToEUI48($mac)}
NAS-IP-Address = $disconnectIp
EOT
coa = << EOT
Calling-Station-Id= ${macToEUI48($mac)}
NAS-IP-Address = $disconnectIp
Filter-Id = $role
EOT
bounce= <<E0T
Cisco-AVPair = subscriber:command=bounce-host-port
Acct-Session-Id = $last_accounting.acctsessionid
EOT
```

3. Documentation

The in-depth or more technical documentation is always as close to the code as possible. Always look at the POD doc [1]. To do so, the preferred way is using the perldoc command as follows:

perldoc lib/pfconfig/cached.pm

^[1] Perl's Plain Old Documentation: http://perldoc.perl.org/perlpod.html

4. Asciidoctor documentation

4.1. Documentation Conventions

4.1.1. Shell commands in code blocks

To ease copy-paste of shell commands:

- Remove useless characters in code blocks like # or \$
- Split long lines with \

4.1.2. Titles

We use Asciidoctor tags for section titles (headings) in place of AsciiDoc tags, see table below for equivalence:

Table 1. Compatibility between AsciiDoc and Asciidoctor syntax for section titles

Level	AsciiDoc syntax (old)	Asciidoctor syntax (new)
Level 0 (Document title)	====	=
Level 1		==
Level 2	_~~	===
Level 3	^^^	====
Level 4	+	====

4.1.3. Other Conventions

* (asterisk) for important vocabulary. Ex: *This Part* is important

_ (underscore) for menus. Ex: _Configuration \to Policies and Access Control \to Connection Profile \to Profile Name_

backquotes `for buttons. Ex: Click on `Save`

4.1.4. Inter-document cross references

We use inter-document cross references feature to make links between all PacketFence guides. When we need to link to a specific section of a document, we use automatic anchors feature to have a correct display in PDF.

4.1.5. List of Asciidoctor tags used

Source: AsciiDoc Mark-up Quick Reference for Red Hat Documentation

NOTE

Some markup examples used in this overview are based on new Asciidoctor features and they are not a part of the standard set of elements. Please, use the :experimental: tag in the header of your document to enable this functionality.

Element	Mark-up	Example rendered output
Application name	No special markup	The foo application.
Code blocks	<pre>[source,golang] package main import "fmt" func main() { fmt.Println("Hello World !") }</pre>	<pre>package main import "fmt" func main() { fmt.Println("Hello World !") }</pre>
Code - inline	<pre>`print("Hello, World!")`</pre>	<pre>print("Hello, World!")</pre>
Command block	\$ echo "Hello, World!" > hello.txt	<pre>\$ echo "Hello, World!" > hello.txt</pre>
Command - inline	Use the [command]'oc get' command to get a list of services.	Use the oc get command to get a list of services.
Emphasis for a term	Use _this_ approach.	Use this approach.

Element	Mark-up	Example rendered output
Filenames or directory paths	Edit the [filename]'pf.conf' file as required and save your changes.	Edit the pf.conf file as required and save your changes. The networks.conf configuration file is located in the /usr/local/pf/ directory.
	The [filename] networks.conf' configuration file is located in the [filename] '/usr/local/pf/' directory.	

Element	Mark-up	Example rendered output
GUI Text	The web browser displays *404* for an unreachable URL.	The web browser displays 404 for an unreachable URL.
GUI Button (experimental feature, Asciidoctor only)	Click btn:[Save As] to save the file under a different name.	Click btn:[Save As] to save the file under a different name.
GUI Menu (experimental feature, Asciidoctor only)	Navigate to menu:File[Import>Import csv] to import a csv file.	Navigate to menu:File[Import>Import csv] to import a csv file.
GUI button and menu (non-experimental)	Navigate to _Configuration -> Policies and Access Control_	Navigate to Configuration → Policies and Access Control

Element	Mark-up	Example rendered output
Inline Image	<pre>image::pf- logo.png[width=25px]</pre>	PacketFence > 1000)>

Element	Mark-up	Example rendered output
Block Image	<pre>.PacketFence image::pf- logo.png[width=25px]</pre>	Packet Fence Sigure 1. Packet Fence
Inline operations and user input	The 'GET' operation can be used to do something. Answer by typing 'Yes' or 'No' when prompted.	The GET operation can be used to do something. Answer by typing Yes or No when prompted.

Element	Mark-up	Example rendered output
Keyboard shortcuts (experimental feature, Asciidoctor only)	kbd:[Ctrl+Alt+Del]	kbd:[Ctrl+Alt+Del]

Element	Mark-up	Example rendered output
Link (external)	<pre>link:https://www.packetfe nce.org[PacketFence]</pre>	PacketFence

Element		Mark-up	Example rendered output
Lists NOTE	Do not put steps in bold.	.Ordered list . First item . Second item . Third item .Unordered list * This * That * The other .Definition or labeled list Term A:: description Term B:: description .Checklist * [] first step ** [] first task ** [] second task * [] second step * [] third step	Ordered list 1. First item 2. Second item 3. Third item Unordered list • This • That • The other Definition or labeled list Term A description Term B description Checklist ② first step ② first task ③ second task ② second step ② third step

Literal value The function returns true The function returns true.	
--	--

Element	Mark-up	Example rendered output
Package	<pre>Install the [package]`packetfence` package.</pre>	Install the packetfence package.
Product name	No special markup. Use {nbsp} in the company and product names. Example: Inverse{nbsp}Inc.	Inverse Inc.
Reference to PacketFence guides	See the PacketFence link:guide- url[_Installation Guide_] for more information.	See the PacketFence <i>Installation Guide</i> for more information.

Element	Mark-up	Example rendered output
System or software variable to be replaced by the user	Use the following command to roll back a deployment, specifying the deployment name: 'oc rollback _deployment_'.	Use the following command to roll back a deployment, specifying the deployment name: oc rollback deployment.
System or software configuration parameter or environment variable	Use the `_IP_ADDRESS_` environment variable for the server IP address.	Use the IP_ADDRESS environment variable for the server IP address.
System item, daemon, or service	<pre>Include the `pf::Switch` library. Stop the `pfqueue` daemon. Start the `iptables` service.</pre>	Include the pf::Switch library. Stop the pfqueue daemon. Start the packetfence-iptables service.

4.2. Checklist to create a new guide

- 2 create PacketFence_GUIDENAME.asciidoc based on PacketFence Template Guide
- ② update all target in Makefile
- 2 update packaging (if necessary)
- 2 update website listing to add a new guide

5. Development environment setup

Set up your development environment to run sources from /usr/local/pf.

Deploy RHEL 8 or Rocky 8 machine. Other operating systems are not supported for development environments.

NOTE | IF y

If you're running on Linode, disable Network helper: https://www.linode.com/docs/guides/network-helper/

Find current devel version number at: https://github.com/inverse-inc/packetfence/blob/devel/conf/pf-release

IMPORTANT This example will use version 99.9 as the example version number.

Install PacketFence from RPM repository:

```
yum localinstall
https://www.packetfence.org/downloads/PacketFence/RHEL8/packetfence-release-
99.9.el8.noarch.rpm -y
yum install kernel-devel-$(uname -r) -y
yum install packetfence --enablerepo=packetfence --allowerasing
git config --global --add safe.directory /usr/local/pf
```

Now, you must go through the configurator and validate you can login into the admin interface at the end.

Next, run:

```
dnf module install nodejs:20
bash /usr/local/pf/addons/dev-helpers/setup-dev-env.sh
```

You will now have to wait for 10-15 minutes after the startup so that all container images are built (they're built on runtime when using a dev environment)

6. Administration GUI development setup

To start a webpack-dev-server instance for the PacketFence admin interface, follow these steps:

- 1. Point webpack-dev-server to an already running PacketFence API by setting an VUE_APP_API_SOCKET_ADDRESS environment variable. For example, export VUE_APP_API_SOCKET_ADDRESS=localhost:1443
- 2. Run cd ./html/pfappserver/root
- 3. Run npm run serve

You should now have a running instance webpack-dev-server on port 8081.

7. Golang environment

7.1. PacketFence Golang libraries

7.1.1. Basic setup

This is a guide on how to setup/use the PacketFence Golang libraries.

To bootstrap the environment:

```
cd /usr/local/pf/go
make go-env
```

To work directly on sources, run:

```
cd go
GO_REPO=${PWD} make go-env
```

This will install Golang version use to build PacketFence Golang binaries and check if all modules defined in go.mod are available.

Source the .bashrc to get the new environment variables:

```
source ~/.bashrc
```

Get a complete overview of the Golang environment with go env command.

7.1.2. Pulling the dependencies

Dependencies use go modules and will be fetched automatically during build time.

You will also need ipset-devel and pkgconfig libraries which can be installed using the following command:

RHEL-based systems

```
yum install ipset-devel pkgconfig
```

Debian-based systems

```
apt install libipset-dev pkg-config
```

7.1.3. Update dependencies

After adding or removing Golang dependencies, run following command in go directory to update go.mod and go.sum files:

```
go mod tidy
```

7.1.4. Building the code

All code should be built into a Caddy middleware which we'll then use in a Caddyfile to create our recipes. Only reason for not using Caddy would be that the binaries doesn't interact using HTTP (which Caddy can handle at some point). For now, we'll focus only on services using HTTP until we're confortable with Caddy.

A local version of Caddy is in caddy/caddy. This is a vendored version of Caddy which includes the plugins and middlewares for PacketFence.

In order to build the Caddy HTTP service (pfhttpd):

```
make pfhttpd
```

Do the same to build pfdns, pfdhcp, pfdetect and pfstats:

```
make all make copy
```

7.1.5. Creating a service

Once pfhttpd is built, use a Caddyfile to load middleware and bind it on a specific port:

```
localhost:1234 {
  logger {
    requesthistory 100
    level DEBUG
  }
  statsd {
    proto udp
    prefix pfsso
  }
  pfsso
}
```

This file should be put in /usr/local/pf/conf/caddy-services/pfexample.conf

Note how the logger configuration can be controlled from the Caddyfile. If the middleware (in this example pfsso) uses or calls the logger, it must be declared in the Caddyfile.

If the middleware uses **statsd**, **statsd** does not have to be configured in the **Caddyfile** which will result in the packets just not being sent (a dummy **statsd** client will be created).

Start pfhttpd with the Caddyfile using the following command:

```
/usr/local/pf/sbin/pfhttpd -conf
/usr/local/pf/conf/caddy-services/pfexample.conf
```

Once it is ascertained that the service is working correctly, create an instance of pf::services::manager for it. Also create a unitfile for it in conf/systemd like the following:

```
[Unit]
Description=PacketFence Example Service
Wants=packetfence-base.target packetfence-config.service
packetfence-iptables.service
After=packetfence-base.target packetfence-config.service
packetfence-iptables.service
Before=packetfence-pfexample.service

[Service]
PIDFile=/usr/local/pf/var/run/pfexample.pid
ExecStart=/usr/local/pf/sbin/pfhttpd -conf
/usr/local/pf/conf/caddy-services/pfexample.conf
Restart=on-failure
Slice=packetfence.slice

[Install]
WantedBy=packetfence.target
```

Make sure that the packaging is also updated to copy those files in the /usr/lib/systemd/system directory.

7.1.6. Running the tests

Like the perl unit tests, the Golang tests rely on the presence of the test pfconfig process to execute properly.

In order to start the test pfconfig process:

```
cd /usr/local/pf/t && ./pfconfig-test
```

You can proceed to execute all or some of the Golang unit tests:

```
cd /usr/local/pf/go
go test ./...
```

```
cd /usr/local/pf/go/firewallsso/lib
go test
```

To run all the tests easily, use:

```
cd /usr/local/pf/go
make test
```

8. Code conventions

8.1. Code style

CAUTION Work in progress.

We are slowly migrating away from an automated **perltidy** code style. The reason we are not doing another pass of tidy is that it messes up code history and makes maintainer's job more complicated than it should be. Every new change uses the new guidelines so over time the old code style will slowly disappear.

- Lines of 120 character width maximum
- No tab characters
- Stay consistent with surrounding white spaces
- Document each subroutine in POD format (perldoc perlpod)
- Use constants instead of hard coded strings or numbers (use constant or Readonly modules)
- in object-oriented modules we use CamelCase [1] notation (ex: \$radiusRequest getVoIpAttributes();)
- in procedural modules we use Perl's usual notation (ex: \$node_info{'pid'} = \$current_request{'pid'};)
- regular expressions should be documented (with the /x modifier)

```
if ($phone_number =~ /
    ^\(?([2-9]\d{2})\)?  # captures first 3 digits allows parens
    (?:-|.|\s)?  # separator -, ., space or nothing
    (\d{3})  # captures 3 digits
    (?:-|.|\s)?  # separator -, ., space or nothing
    (\d{4})$  # captures last 4 digits
    /x) {
        return "$1$2$3";
}
```

• SQL should be capitalized, properly indented and always use named fields (no *)

```
$node_statements->{'node_add_sql'} = get_db_handle()->prepare(<<'SQL');
INSERT INTO node (
    mac, pid, category_id, status, voip, bypass_vlan,
    detect_date, regdate, unregdate,
    user_agent, computername, dhcp_fingerprint,
    last_arp, last_dhcp,
    notes</pre>
```

```
) VALUES (
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
)
SQL
```

[1] http://en.wikipedia.org/wiki/CamelCase

9. HTTP JSON API

PacketFence provides an HTTP JSON API which exposes most of its functionality.

The full API specification for:

- the latest stable release is available from: https://packetfence.org/doc/api/
- the latest devel release is available from: https://packetfence.org/doc/api-devel/

The API is exposed on 127.0.0.1 (localhost) as well as the management interface of the server for remote calls. Users access the API on TCP port 9999 over a secure connection (HTTPS).

Authentication can be done using either the webservices credentials or any credentials that are valid on the admin interface.

9.1. How to use the API

9.1.1. On a PacketFence server

The pfperl-api command located in /usr/local/pf/sbin/ directory can be use directly from a PacketFence server to query the API without having to specify an authentication token and extraparameters.

Example to get your general configuration:

```
/usr/local/pf/sbin/pfperl-api get /api/v1/config/base/general \
| python -m json.tool
```

Example to create a node:

```
/usr/local/pf/sbin/pfperl-api get -M POST /api/v1/nodes/ \
-c '{"mac":"22:33:44:55:66:77","pid":"default"}' \
| python -m json.tool
```

Example to create a node with JSON payload in a dedicated file:

example.json

```
{"mac":"22:33:44:55:66:77","pid":"default"}

cat example.json | \
/usr/local/pf/sbin/pfperl-api get -M POST /api/v1/nodes/ \
```

```
| python -m json.tool
```

9.1.2. On a different computer

NOTE

The API specification mentionned above provides ready-to-use curl commands through the "Try it out" button.

First, get an authentication token with the webservices credentials or an admin account:

```
curl -X POST "https://PF_MANAGEMENT_IP:9999/api/v1/login" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"username\":\"admin\",\"password\":\"admin\"}" \
--insecure |
python -m json.tool
```

You will get following response:

```
{
    "token": "MY_TOKEN"
}
```

Then use this token to query the API. The following example fetches the general configuration:

```
curl -X GET "https://PF_MANAGEMENT_IP:9999/api/v1/config/base/general" \
-H "accept: application/json" \
-H "Authorization: MY_TOKEN" \
--insecure |
python -m json.tool
```

Although the API should mostly stay the same, backward compatibility is not 100% guaranteed for the moment until the v1 API reaches full maturity.

10. Customizing PacketFence

10.1. Captive Portal

10.1.1. Presentation

XHTML Templates

Captive portal content uses Template Toolkit templates. Default template files located in \u00edusr/local/pf/html/captive-portal/templates. Edit HTML code freely in these files.

Each template relies on layout.html for the common top and bottom portions of the page.

Internationalized AUP

For Acceptable Usage Policy translations in different captive portal languages, create specially named templates for different languages.

Example: browser locale es_ES uses template aup_text.es.html when detected. Browser locale en_US uses template aup_text.en.html for English browsers.

The template aup_text.html is used as the final fallback for all locales.

Cannot use full locale in template name (aup_text.en_US.html); use only two-letter prefix.

Logo

Customize captive portal logo: go to $Configuration \rightarrow Policies$ And Access $Control \rightarrow Connection$ $Profiles \rightarrow default \rightarrow Files$. Upload logo at root of files. After upload, go to Captive Portal section of connection profile and change 'Logo' field value to profile - templates / default / filename - of your-logo.png.

Alternative: delete existing logo.png, upload your logo and rename to logo.png. This avoids altering 'Logo' value in connection profile.

You can also have a different logo per connection profile. In order to do so, upload your logo in the appropriate connection profile, then edit it's 'Logo' value to be /profile-templates/CONNECTION_PROFILE_ID/filename-of-your-logo.png.

For the best results, your logo size should be approximately 330x75 pixels.

CSS

The easiest way to customize CSS is to override default CSS using a <style> tag inside layout.html.

<style> tag must be inserted just before <\head> in layout.html.

You also need to disable Content-Security-Policy (CSP) headers on captive portal (see

instructions).

Workflow

When a HTTP request is received by the Apache web server, the following workflow happens:

- URL is compared against the redirection instructions in /usr/local/pf/conf/httpd.conf.d/captive-portal-cleanurls.conf
- 2. Requested CGI script in /usr/local/pf/html/captive-portal/ is executed
- 3. CGI script calls a generate_<type> which is defined in /usr/local/pf/lib/pf/web.pm
- 4. The generate_<type> function populate the proper template in /usr/local/pf/html/captive-portal/templates in order to render the page

Remediation Pages

The remediation page shown to the user during isolation are specified through the URL parameter of the given security event in <code>/usr/local/pf/conf/security_events.conf</code>. In its default configuration, PacketFence uses Template Toolkit to render text provided in the directory <code>/usr/local/pf/html/captive-portal/templates/security_events</code> and obeys to everything mentioned in the Presentation section.

Translations

The language of the user registration pages is selected through the **general.locale** configuration parameter. Translatable strings are handled differently for the Remediation pages and the rest of the captive portal:

• Remediation pages

Strings defined in the security event pages (in /usr/local/pf/html/captive-portal/templates/security_events) will be looked up in the translation files in /usr/local/pf/conf/locale/.. and if a translation is available the translated string will be the one visible on the captive portal.

Also, if you create a security event template with the name of your locale in /usr/local/pf/html/captive-portal/templates/security_events in the format: <template_name>.<locale_name>.html. It will be loaded instead of the default <template_name>.html and so you can put strings and HTML directly in your target language without the hassle of escaping everything properly as you would need to do with gettext.

For example, if malware.es_ES.html exists and you are using the es_ES (Spanish) locale then it will be loaded instead of malware.html on a security event set to load the malware template.

• Rest of the captive portal

In the templates, if a string is in a i18n() call it will be translated. Also pf::web takes care of performing some of the other translations.

10.2. Adding custom fields to the database

You can, if needed, add additional fields to the PacketFence database. Keep in mind though that this might lead to more work when you upgrade to the next PacketFence version. Depending on the degree of integration of these fields with PacketFence, you'll have to execute one or more of

10.2.1. Adding a field to the database only

In this case, the field is part of one of the main PacketFence tables, but PacketFence is unaware of it. PacketFence won't consult the field and won't be able to modify it. A possible usage scenario would be a 3rd party application which maintains this field.

Since PacketFence doesn't have to know about the field, all you have to do is execute your SQL ALTER TABLE query and you are done.

10.2.2. Adding a field and giving PacketFence read-only access

In this case, PacketFence can show the contents of the table using both pfcmd but won't be able to modify the contents of the field.

Start by modifying the database table using an SQL ALTER TABLE query.

Then, modify the Perl module having the same name as the table you have added the field to, i.e. If you added the field to the node table, then edit /usr/local/pf/lib/pf/node.pm. You'll have to modify the SQL SELECT queries at the beginning of the file to include your new field and, possibly the functions using these queries. If your new field should be used in reports, the dashboard or graphs, you'll also have to modify the queries in /usr/local/pf/lib/pf/pfcmd/graph.pm, /usr/local/pf/lib/pf/pfcmd/report.pm and /usr/local/pf/lib/pf/pfcmd/dashboard.pm.

10.2.3. Adding a field and giving PacketFence read-write access

Start by creating the read-only field as described above.

Then, modify the SQL UPDATE and INSERT queries in the database tables' Perl module, as well as the associated functions.

10.3. VLAN assignment

PacketFence uses the getRegisteredRole function defined in pf::role::custom to determine a node's VLAN. Here's the default function:

```
sub getRegisteredRole {
    #$switch is the switch object (pf::Switch)
    #$ifIndex is the ifIndex of the computer connected to
    #$mac is the mac connected
    #$node_info is the node info hashref (result of pf::node's node_view on

$mac)
    #$conn_type is set to the connection type expressed as the constant in

pf::config
    #$user_name is set to the RADIUS User-Name attribute (802.1X Username or

MAC address under MAC Authentication)
    #$ssid is the name of the SSID (Be careful: will be empty string if radius

non-wireless and undef if not radius)
    my ($self, $switch, $ifIndex, $mac, $node_info, $connection_type,

$user_name, $ssid) = @_;
```

```
my $logger = Log::Log4perl->get_logger();

return $switch->getVlanByName('normalVlan');
}
```

As you can see, the function receives several parameters (such as the switch and full node details) which allow you to return the VLAN in a way that matches exactly your needs!

11. SNMP

11.1. Introduction

Good places to start reading about SNMP are https://en.wikipedia.org/wiki/SNMP and https://www.net-snmp.org/.

When working with SNMP, translating between OIDs and variable names becomes necessary sooner or later (in fact more sooner than later). When the OIDs are part of the Cisco MIBs, use the following tool to do the translation: http://tools.cisco.com/Support/SNMP/public.jsp. Otherwise, use snmptranslate for example and setup a collection of MIBs, provided (hopefully) by the manufacturer of the network equipment.

11.2. Obtaining switch and port information

Below are some example of how to obtain simple switch and port information using SNMP. These examples assume that the switch understands SNMP v2, has the read community public defined and is reachable at 192.168.1.10.

11.2.1. Switch Type

```
snmpwalk -v 2c -c public 192.168.1.10 sysDescr
```

11.2.2. Switchport indexes and descriptions

```
snmpwalk -v 2c -c public 192.168.1.10 ifDescr
```

11.2.3. Switchport types

```
snmpwalk -v 2c -c public 192.168.1.10 ifType
```

11.2.4. Switchport status

```
snmpwalk -v 2c -c public 192.168.1.10 ifAdminStatus
snmpwalk -v 2c -c public 192.168.1.10 ifOperStatus
```

12. Supporting new network hardware

PacketFence supports new network hardware (Network Devices) through Perl objects using extensive inheritance. Add new product support by extending the pf::Switch class in /usr/local/pf/lib/pf.

Start with vendor documentation when adding network device support. Determine exact switch capabilities and PacketFence compatibility. Identify device type: Switch, Access-Point or Wireless Controller.

12.1. Switch

Determine available capabilities: link change traps only? MAC notification traps? Port Security? MAC Authentication? 802.1X?

12.1.1. Link change capabilities

Define new class inheriting from pf::Switch with at least these functions:

- getMacAddrVlan
- getVersion
- getVlan
- getVlans
- isDefinedVlan
- parseTrap
- _getMacAtIfIndex
- _setVlan

parseTrap function must return hash with keys trapType and trapIfIndex. Values: up or down for trapType, trap's ifIndex for trapIfIndex. See similar switch implementation for inspiration. Recent modules typically better coded than older ones.

12.1.2. MAC notification capabilities

In addition to the functions mentioned for link change, you need to define the following function:

• isLearntTrapsEnabled

Also, your parseTrap function will need to return trapOperation, trapVlan and trapMac keys in addition to trapType equals mac. See a similar switch's implementation for inspiration. Usually recent modules are better coded than older ones.

12.1.3. Port security capabilities

In addition to the functions mentioned for link change, you need to define the following

functions:

- isPortSecurityEnabled
- authorizeMAC

In this case, the parseTrap function needs to return secureMacAddrViolation for the trapType key. See a similar switch's implementation for inspiration. Usually recent modules are better coded than older ones.

12.1.4. MAC Authentication

NOTE Work in progress

NAS-Port translation

Often the **ifIndex** provided by the switch in a RADIUS **Access-Request** is not the same as it's real world physical equivalent. For example in Cisco requests are in the 50xxx while physical ifIndex are 10xxx. In order for PacketFence to properly shut the port or request re-authentication a translation between the two is required. To do so provide an implementation of the following interface:

• NasPortToIfIndex

MAC Authentication re-evaluation

MAC Authentication re-evaluation is necessary in order to provoke a VLAN change in the PacketFence system. This happens for instance when a node is isolated based on an IDS event or when the user successfully authenticates through the captive portal. The default implementation in pf::Switch will bounce the port if there is no Voice over IP (VoIP) devices connected to the port. Otherwise it will do nothing and send an email. If your device has specific needs (for example it doesn't support RADIUS Dynamic VLAN Assignments) override:

• handleReAssignVlanTrapForWiredMacAuth

Please note that the default implementation works 99% of the time. If you are unsure whether to override, it means you don't need to override.

Once the MAC Authentication works, add the Wired MAC Auth capability to the switch's code with:

sub supportsWiredMacAuth { return \$TRUE; }

12.1.5, 802.1X

NOTE Work in progress

NAS-Port translation

Often the **ifIndex** provided by the switch in a RADIUS **Access-Request** is not the same as it's real world physical equivalent. For example in Cisco requests are in the 50xxx while physical ifIndex are 10xxx. In order for PacketFence to properly shut the port or request re-authentication a translation between the two is required. To do so provide an implementation of the following

interface:

• NasPortToIfIndex

So far the implementation has been the same for MAC Authentication and 802.1X.

Force 802.1X re-authentication

802.1X re-authentication is necessary in order to provoke a VLAN change in the PacketFence system. This happens for instance when a node is isolated based on an IDS event or when the user successfully authenticates through the captive portal. The default implementation in pf::Switch uses SNMP and the standard IEEE8021-PAE-MIB and is generally well supported. If the default implementation to force 802.1X re-authentication doesn't work override:

• dot1xPortReauthenticate

Proper 802.1X implementations will perform re-authentication while still allowing traffic to go through for supplicants under re-evaluation.

Once the 802.1X works, add the Wired Dot1X capability to the switch's code with:

```
sub supportsWiredDot1x { return $TRUE; }
```

12.1.6. RADIUS Dynamic Authorization (RFC3576)

NOTE

RADIUS Dynamic Authorization implementation is not recommended on the wired side at this point.

RADIUS Dynamic Authorization also known as RADIUS Change of Authorization (CoA) or RADIUS Disconnect Messages is supported by PacketFence starting with version 3.1.

On wired network devices CoA can be used to change the security posture of a MAC and perform other functions like bounce a port. So far we only encountered support for CoA on the wired side on the Cisco hardware. For an implementation example check <u>_radiusBounceMac</u> in pf::Switch::Cisco.

12.1.7. Floating Network Devices Support

Floating Network Devices are described in the Administration Guide under "Floating Network Devices" in the "Optional Components" section. Refer to this documentation if you don't know what Floating Network Devices are.

In order to support Floating Network Devices on a switch, you need to implement the following methods:

- setPortSecurityEnableByIfIndex(\$ifIndex, \$enable)
- isTrunkPort(\$ifIndex)
- setModeTrunk(\$ifIndex, \$enable)
- setTaggedVlans(\$ifIndex, \$switch_locker_ref, @vlans)
- removeAllTaggedVlans(\$ifIndex, \$switch_locker_ref)

You might need to implement the following:

enablePortConfigAsTrunk(\$mac, \$switch_port, \$switch_locker, \$taggedVlans)

Provided by pf::Switch core as the glue between setModeTrunk(), setTaggedVlans() and removeAllTaggedVlans(). Override if necessary.

• disablePortConfigAsTrunk(\$switch_port)

Provided by pf::Switch core as the glue between setModeTrunk(), setTaggedVlans() and removeAllTaggedVlans(). Override if necessary.

enablePortSecurityByIfIndex(\$ifIndex)

Provided by pf::Switch core as a slim accessor to setPortSecurityEnableByIfIndex(). Override if necessary.

• disablePortSecurityByIfIndex(\$ifIndex)

Provided by pf::Switch core as a slim accessor to setPortSecurityEnableByIfIndex(). Override if necessary.

enableIfLinkUpDownTraps(\$ifIndex)

Provided by pf::Switch core as a slim accessor to setIfLinkUpDownTrapEnable. Override if necessary.

disableIfLinkUpDownTraps(\$ifIndex)

Provided by pf::Switch core as a slim accessor to setIfLinkUpDownTrapEnable. Override if necessary.

Once all the required methods are implemented, enable the capability in the switch's code with:

sub supportsFloatingDevice { return \$TRUE; }

12.2. Wireless Access-Points or Controllers

12.2.1. Minimum hardware requirements

PacketFence's minimum requirements regarding Wireless hardware is:

- definition of several SSID with several VLANs inside every SSID (minimum of 2 VLANs per SSID)
- RADIUS authentication (MAC Authentication / 802.1X)
- Dynamic VLAN assignment through RADIUS attributes
- a means to de-associate or de-authenticate a client through CLI (Telnet or SSH), SNMP, RADIUS Dyn-Auth [1] or WebServices

Most of these features are available on enterprise grade Access Points (AP) or Controllers. Where the situation starts to vary wildly is for deauthentication support.

12.2.2. De-authentication techniques

CLI (SSH or Telnet)

An error prone interface and requires preparation for the SSH access or is insecure for Telnet. Not recommended if you can avoid it.

SNMP

SNMP de-authentication works well when available. However Vendor support is not consistent and the OID to use are not standard.

RADIUS Dynamic Authorization (RFC3576)

RADIUS Dynamic Authorization also known as RADIUS Change of Authorization (CoA) or RADIUS Disconnect Messages is supported by PacketFence starting with version 3.1. When supported it is the preferred technique to perform de-authentication. It is standard and requires less configuration from the user.

An actual implementation can be found in pf::Switch::Aruba.

12.2.3. Template module

Start with a copy of the template module pf/lib/pf/Switch/WirelessModuleTemplate.pm and fill in appropriate documentation and code.

12.2.4. Required methods

You need to implement at least:

getVersion()

Fetches firmware version

parseTrap()

Parses the SNMP Traps sent by the hardware. For wireless hardware an empty method like the one in pf::Switch::WirelessModuleTemplate is ok.

deauthenticateMac()

Performs deauthentication

supportsWirelessMacAuth()

Return **\$TRUE** if MAC-Authentication is supported

supportsWirelessDot1x()

Return \$TRUE if 802.1X (aka WPA-Enterprise) is supported

12.2.5. Override methods

If default implementation of the following methods doesn't work you will need to override them:

extractSsid()

Extract SSID from RADIUS Request

12.2.6. Special case: bridged versus tunneled modes and deauthentication

It is important to validate the Access-Point (AP) to Controller relationship when operating in bridged mode versus when operating in tunneled mode. For example, some hardware will send the RADIUS Access-Request from the AP when in bridged mode even though it is controlled by a controller. This behavior impacts deauthentication because it still needs to be performed on the controller. To support this behavior a switches.conf parameter was introduced: controller_ip.

When adding a new Wireless module try to validate the bridged versus tunneled behavior and modify deauthenticateMac() to honor controller_ip if required.

12.3. The "adding a new network device module in PacketFence" checklist

Here's a quick rundown of the several files you need to edit in order to add a new switch into PacketFence. There's a plan to reduce this amount of work in progress see issue #1085.

- Tested model and firmware version should be documented in module's POD
- Any bugs and limitations should be documented in module's POD
- Make sure that all tests pass
- Add configuration documentation to the Network Devices Guide
- Add switch to the Network Devices Guide's switch chart
- Add switch to the chart in README.network-devices

13. PacketFence builds

13.1. Packer

To build PacketFence, we use Packer to create container images that are then used in a GitLab pipeline.

13.2. Anatomy of Packer template

PacketFence rely on gitlab-buildpkg images to run GitLab pipeline with gitlab-buildpkg-tools. Packer template (pfbuild, json) use these images as base to build inverse-inc container images.

13.2.1. Custom build dependencies

To start building PacketFence, we need to install specific things in images like:

- custom repositories and GPG keys to install RPM or DEB packages at build time
- install and configure upstream softwares necessary to build PacketFence if we can't use packages

We use Ansible and shell scripts to cover these steps. It's possible because Python is already installed in gitlab-buildpkg images.

13.2.2. Build dependencies in packages specs

Build dependencies need to be install in container images before starting build process. We rely on gitlab-buildpkg-tools to automatically install those dependencies based on packages specifications file. Consequently, all build requires need to be define in packages specifications file.

13.2.3. Golang environment

We use Packer to set up a Golang environment in order to build Golang binaries in container images.

We also set environment variables in container images, using ENV directives, to simplify usage of go commands.

13.2.4. Clean up

To make container images lightweight, we make a clean up at end of the process.

13.3. How to build container images?

Container images are built inside a GitLab pipeline.

13.3.1. Prerequisites

Install following softwares:

- Packer (>=1.6.5)
- Docker
- Ansible (>=2.10)

13.3.2. Makefile

Because we run build inside a GitLab pipeline, many environment variables can be set to change build behavior. A Makefile and a wrapper are provided to simplify creation of a new container images based on environment variables.

Example usage of Makefile

```
DOCKER_TAGS=feature-pfconfig-container \
REGISTRY_USER=InverseBot REGISTRY_PASSWORD=REDACTED \
REGISTRY=ghcr.io REGISTRY_URL=${REGISTRY}/inverse-inc/packetfence \
make -e -C ci/packer build_img_docker_pfbuild
```

13.4. Troubleshooting

You can troubleshoot issues in Packer builds by setting environment variable **\$PACKER_LOG** environment variable to 1.

14. Developer recipes

14.1. Virtual environment

To test PacketFence on several distributions, we used Vagrant virtual machines. You can set up a similar environment to develop.

14.1.1. Virtual environment: prerequisites

Install following softwares:

- Vagrant (>= 2.2.10) provided by Hashicorp
- libvirt, KVM/QEMU and vagrant-libvirt if you want to use libvirt as a provider for Vagrant
- pywinrm > 0.3 if you want to use ad virtual machine
- Ansible = 2.10.X

14.1.2. Virtual environment: initial setup

Install Ansible and Ansible code

RHEL-based systems

```
yum install -y python3-pip
```

Debian-based systems

```
apt update
apt install -y python3-pip
```

Then install Ansible through pip:

```
pip3 install --user 'ansible<3'
```

After installing Ansible through pip, you need to add \$HOME/.local/bin/ to your PATH.

Using ansible-galaxy command, you can then pull PacketFence's collection and Ansible roles:

```
cd packetfence/addons/vagrant
ansible-galaxy install -r requirements.yml
```

14.2. Running development version

14.2.1. Bleeding edge

For day to day development one can run a checkout of the current development branch in /usr/local/pf/ and develop there within a working setup.

14.2.2. Not so bleeding edge

If you prefer to use packages, you can install latest PacketFence packages from nightly builds.

Initial setup

Install prequisites and follow initial setup then start pf*dev machines.

These machines will be auto-configured to install nightly builds from development repositories.

Packages from PPA

If you want to install latest packages built in the pipeline, available on GitLab, you can use following commands:

```
CI_PROJECT_NAME="ppa" CI_PAGES_URL="http://inverse-inc.gitlab.io/packetfence" vagrant up VM_NAME
```

WARNING

Packages available here could be build on other branches than devel.

Day to day usage

To keep your machine up-to-date, you can run the following commands:

```
vagrant provision --provision-with=install VM_NAME
```

Make sure you read the Upgrade Guide after every upgrades to avoid any surprises.

Running an Ansible playbook against Vagrant virtual machines

If you want to use Ansible directly against Vagrant virtual machines (already started), you can use following commands:

```
ansible-playbook site.yml --limit VM_NAME
```

It's possible because we use a static Ansible inventory. This inventory is also used by Vagrant to start virtual machines.

Specific version of a package

If you want to install a specific version of a package, you can create a YAML file that override default inventory, for example:

```
cat >> extra.yml << EOF
packetfence_install__centos_packages:
    - packetfence-9.2-20191126180126.98740132.0007.el7
EOF
ansible-playbook site.yml --limit VM_NAME -e @extra.yml</pre>
```

15. Containers recipes

15.1. Glossary

• A server running the packages: A PacketFence server installed using the RPM or DEB packages and not converted to a dev machine (i.e. what PacketFence users deploy)

15.2. Applying a custom patch on a server running the packages

When applying a custom patch or adding debug in the code on a PacketFence 12.0+ server, additional steps must be taking for your change to be effective in the service(s) running in container mode.

To know if a service runs in container mode, run **systemctl status** on the service (ex: **systemctl status packetfence-pfpki**) and check if one of the child processes contains **docker run**.

After you've altered the code on the server and you're satisfied with the changes, run the following command:

(pfpki is being used in this example, replace with the appropriate container
name)

/usr/local/pf/addons/dev-helpers/build-local-container.sh pfpki

Make sure the build succeeds and then restart the service using **systemctl restart [service-name]** to make your change active.

WARNING

If you apply the maintenance or upgrade PacketFence, your changes to this container will be lost

15.3. Altering the code in a container on a server running the packages

If you alter the code in a running container, your change will be lost the next time the container restarts. In order to make your change permanent, run:

(pfpki is being used in this example, replace with the appropriate container
name)

/usr/local/pf/addons/dev-helpers/commit-local-container.sh pfpki

WARNING

If you apply the maintenance or upgrade PacketFence, your changes to this container will be lost

16. Running tests

16.1. Unit tests

16.1.1. Unit tests: prerequisites

Prerequisites to run unit tests:

- MariaDB up and running
- PacketFence package(s) installed with all dependencies in /usr/local/pf directory
- Fingerbank API key configured
- Environment variables defined:
 - PF_TEST_MGMT_INT
 - PF_TEST_MGMT_IP
 - PF TEST MGMT MASK
- Golang environment

You can meet these prerequisites by starting a pf*dev Vagrant virtual machine using instructions in Virtual environment: initial setup section.

Inside pf*dev virtual machines, t directory will be available under /usr/local/pf/t.

16.1.2. Running all unit tests

After a vagrant up command, unit tests should have been run. If you want to run them again, execute following command:

```
vagrant provision --provision-with=run-unit-tests VM_NAME
```

This will upload run-tests.sh script on virtual machine to run it.

IMPORTANT

Don't forget to run a vagrant rsync VM_NAME before running unit tests again if you modify t directory on your host. This will upload latest changes made to /src/t directory in VM_NAME.

16.1.3. Running Perl unit tests

If you want to run only Perl unit tests, disable Golang unit tests using **GOLANG_UNIT_TESTS** environment variable:

GOLANG_UNIT_TESTS=no vagrant provision --provision-with=run-unit-tests VM_NAME

16.1.4. Running Golang unit tests

If you want to run only Golang unit tests, disable Perl unit tests using PERL_UNIT_TESTS environment variable:

```
PERL_UNIT_TESTS=no vagrant provision --provision-with=run-unit-tests VM_NAME
```

You can get more details on Golang unit tests in Golang section.

16.1.5. Wrapper

In ci/lib/test, you will find a Makefile used as a wrapper to start, test and destroy virtual machines. Examples:

Usage of Makefile

```
make -C ci/lib/test test-pfcen7dev-dev
make -e -C ci/lib/test test-pfcen7dev-dev
make PF_VM_NAME=pfdeb9dev PERL_UNIT_TESTS=no -C ci/lib/test test
make PF_VM_NAME=pfdeb9dev clean
```

16.2. Integration tests

The aim of integration tests is to test common PacketFence scenarios and integrations in a pipeline.

Integration tests rely on:

- Virtual environment
- network topologies built using libvirt [1]
- virtual machines different than PacketFence to test integrations

16.2.1. Network subnets and IP addresses.

Table 2. Subnet table

| Network name | Subnet | VLAN ID |
|--------------|------------------|---------|
| Management | 172.17.17.0/24 | 17 |
| Registration | 172.17.2.0/24 | 2 |
| Isolation | 172.17.3.0/24 | 3 |
| Inline L2 | 172.17.6.0/24 | 6 |
| Inline L3 | 172.17.18.0/24 | 18 |
| Internet | 192.168.121.0/24 | 100 |

Management network is used to provision each virtual machine using Ansible to put them in a

desired state.

Table 3. IP addresses assigned to virtual machines

| Virtual machine | Network name | IP address |
|---------------------|--------------|---------------|
| pfel8dev | Management | 172.17.17.10 |
| pfel8stable | Management | 172.17.17.14 |
| pfdeb12dev | Management | 172.17.17.12 |
| pfdeb12stable | Management | 172.17.17.16 |
| ad | Management | 172.17.17.100 |
| linux01 | Management | 172.17.17.101 |
| linux02 | Management | 172.17.17.102 |
| switch01 | Management | 172.17.17.201 |
| wireless01 | Management | 172.17.17.210 |
| node01 | Management | 172.17.17.251 |
| node02 | Management | 172.17.17.252 |
| pf*dev or pf*stable | Registration | 172.17.2.2 |
| pf*dev or pf*stable | Isolation | 172.17.3.2 |
| pf*dev or pf*stable | Inline L2 | 172.17.6.2 |
| switch01 | Inline L2 | 172.17.6.3 |
| switch01 | Inline L3 | 172.17.18.254 |
| | | |

NOTE First IP address (.1) in each subnet is reserved for **libvirt** hypervisor.

16.2.2. Wired network topology

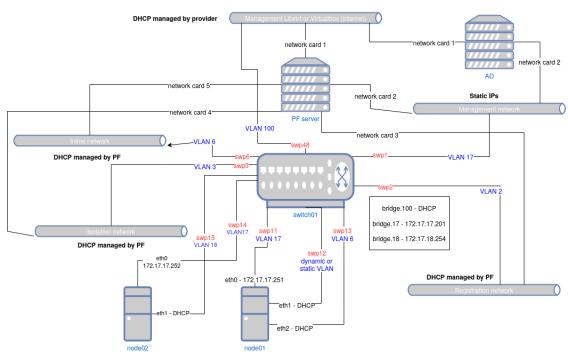


Figure 2. Wired network topology

Initial Provisioning

switch01, node01 and node02 are provisioned using Vagrant like this:

- a first boot with basic shell provisioning to configure interfaces remap and networks
- a second boot that handles interface remap
- an Ansible provisioning

Provisioning is deliberately minimalist to make the most during integration tests.

Inventory Information

Table 4. IPAM table

| Virtual machine | Interfaces | MAC address |
|-----------------|---|-----------------------------------|
| switch01 | swp48, bridge, bridge.6,
bridge.17, bridge.18,
bridge.100 | Same MAC, automatically generated |
| switch01 | swp1 | a0:00:00:00:01 |
| switch01 | swp2 | 44:38:39:00:00:02 |
| switch01 | swp3 | 44:38:39:00:00:03 |
| switch01 | swp6 | 44:38:39:00:00:06 |
| switch01 | swp11 | 44:38:39:00:00:11 |
| switch01 | swp12 | 44:38:39:00:00:12 |

| Virtual machine | Interfaces | MAC address |
|-----------------|------------|-------------------|
| switch01 | swp13 | 44:38:39:00:00:13 |
| switch01 | swp14 | 44:38:39:00:00:14 |
| switch01 | swp15 | 44:38:39:00:00:15 |
| node01 | eth0 | a0:00:00:00:00:12 |
| node01 | eth1 | 00:03:00:11:11:01 |
| node01 | eth2 | 00:03:00:11:11:02 |
| node02 | eth0 | a0:00:00:00:00:22 |
| node02 | eth1 | 00:03:00:11:12:01 |

16.2.3. Wireless network topology

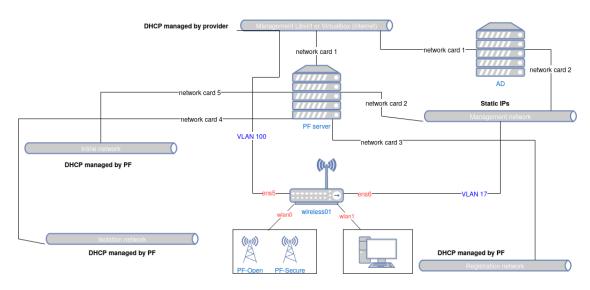


Figure 3. Wireless network topology

Inventory Information

Table 5. IPAM table

| Virtual machine | Interfaces | MAC address |
|-----------------|---|-------------------|
| wireless01 | wlan0 (hostapd managed interface) | 02:00:00:00:00 |
| wireless01 | wlan0.XXX (with XXX VLAN returned by PacketFence in RADIUS reply) | 02:00:00:00:00 |
| wireless01 | wlan1 (wpa_supplicant interface) | 02:00:00:00:01:00 |

On wireless01:

- wlano is the interface which represents an access point (NAS for PacketFence)
- wlan1 is the interface which represents a supplicant (node for PacketFence)

16.2.4. Virtual machines

Active Directory Server

Virtual machine called ad will be auto-provisioned with:

- a DNS domain
- an Active Directory domain
- Active Directory Certificate Services (AD CS) with auto-enrollment using a GPO
- a administrator account, member of Domain admins group, with VagrantPass1 as password
- a packetfence account, member of Domain users group, with P@ck3tF3nc3pass as password

Several reboots are necessary before machine can be provisioned by Ansible. During initial Ansible provisioning, several reboots will occur too. It takes like few minutes to have a machine up and running.

You can find credentials of AD accounts (domain administrator and PacketFence user) in following files:

• \$PF_ROOT/addons/vagrant/inventory/group_vars/linux_servers/samba4ad.yml

Switch01

switch01 is a virtual switch that uses Cumulus Linux 3.7 system.

This switch is configured using a VLAN aware-bridge to manage VLAN on interfaces (recommended approach)

hostapd is the daemon responsible to send 802.1X and MAC Authentication requests to RADIUS server (as described in 802.1X Cumulus Linux documentation). We configured this daemon using Ansible with RADIUS server informations. However, daemon will be started during integration tests when switch interfaces are involved.

Node01 and Node02

node01 is a Debian Buster virtual machine used as node to test wired PacketFence features like 802.1X, MAC authentification, registration, isolation and inline scenarios.

node02 is identical to node01 but is only used to test inline L3 features of PacketFence.

These machines have an Internet access only during its first boot to emulate a node connected to a switch controlled by PacketFence. After the reboot, machines are only reachable using management network: vagrant ssh node01 will not work.

All interfaces of node01 and node02 are up after initial provisionning. We rely on switch01 configuration to trigger specific scenario.

Because node01 and node02 have no IP on management network during first boot, Ansible provisioning through Vagrant is specific and made in two steps:

- pre-provisioning using dynamic inventory generated by Vagrant and a specific playbook
- post-provisioning identical to other Vagrant VMs (but without any Internet access)

Pre-provisioning playbooks should be used to install everything that require an Internet access.

Pre-provisioning step will not use variables defined in common Ansible inventory: variables need to be defined directly in playbooks that run during this step. Variables defined in common Ansible inventory and in playbooks need to be consistent to avoid an override during post-provisioning.

Wireless01

wireless01 is a Debian Buster virtual machine used as a virtual switch and node. It is used to test Wireless PacketFence features like 802.1X, MAC authentification.

hostapd is the daemon responsible to send 802.1X and MAC Authentication requests to RADIUS server. It is using the kernel module mac80211_hwsim, a software simulator of 802.11 radio(s) for mac80211 (as described in Linux Wireless mac80211_hwsim). We configured this daemon using Ansible with RADIUS server informations.

Two deamons are available. One for an Open SSID and the other for a Secure SSID. Both are set to not run at the same time.

wpa_supplicant utility is an implementation of the WPA Supplicant component with support for WPA and WPA2 (IEEE 802.11i / RSN). Supplicant is the IEEE 802.1X/WPA Supplicant for wireless network devices. It implements key negotiation with a WPA Authenticator which controls the roaming and IEEE 802.11 authentication/association of the wlan driver.

Linux servers

Linux servers are used to:

- provide infrastructure services to PacketFence server(s)
- host services to test integration with PacketFence

They are provisioned using Ansible.

^[1] based on Cumulus Networks's project cldemo

17. Contributing

PacketFence contribution guidelines:

• Be active on the developer mailing list

Join our developers mailing list for PacketFence contributions: https://lists.sourceforge.net/lists/listinfo/packetfence-devel. Share your issues, work, and solutions. Active collaboration increases chances of timely work incorporation.

• Use the issue tracker: https://packetfence.org/bugs/

Check existing tickets - your bug/feature may be filed already with helpful information.

• Please provide small, focused and manageable patches or pull-requests

For extensive coding: use **git** and track **stable** branch. Develop features in small chunks while staying in touch. This enables quick merging; avoid large code dumps.

17.1. Creating patches

NOTE Use git/github tools instead of manual patch sending.

Patches should be sent in unified diff format. This can be obtained from the diff or git tools.

```
diff -u oldfile newfile
```

or from a checkout of the PacketFence source code from git:

git diff

17.2. Translations

The internationalization process uses **gettext**. If you are new to **gettext**, please consult https://www.gnu.org/software/gettext/manual/gettext.html#Overview for a quick introduction.

The PO files are stored in /usr/local/pf/conf/locale. List that directory to see the languages we currently have translations for.

17.2.1. Online using Transifex

We use the hosted service Transifex to translate PacketFence's PO files. It offers the possibility to translate all the strings online as well as providing a command-line tool to push your changes. It's very convenient.

To use Transifex, you must first sign up for a free account here: https://www.transifex.net/plans/signup/free/

- Once registered, request a new team for your language
- Once authorized, you'll be able to start/continue translating PacketFence in your language

If you need further help about using Transifex, you might want to have a look here.

17.2.2. Using traditional method

If you want to add support for a new language, please follow these steps:

- 1. create a new language subdirectory in /usr/local/pf/conf/locale
- 2. change into your newly created directory
- 3. create a new subdirectory LC_MESSAGES
- 4. change into your newly created directory
- 5. copy the file /usr/local/pf/conf/locale/en/LC_MESSAGES/packetfence.po into your directory
- 6. translate the message strings in packetfence.po
- 7. create the MO file by executing:

/usr/bin/msgfmt packetfence.po

Submit your new translation to the PacketFence project by contacting us at packetfence-devel@lists.sourceforge.net.

18. Commercial Support and Contact Information

For any questions or comments, do not hesitate to contact us by writing an email to: support@inverse.ca.

Inverse (https://inverse.ca) offers professional services around PacketFence to help organizations deploy the solution, customize, migrate versions or from another system, performance tuning or aligning with best practices.

Hourly rates or support packages are offered to best suit your needs.

Please visit https://inverse.ca/ for details.

19. GNU Free Documentation License

Please refer to https://www.gnu.org/licenses/fdl-1.2.txt for the full license.